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1. Background 

Leichhardt Salt Pty Ltd has interests in exploring the feasibility of satellite remote sensing data 

from Sentinel-2 A/B in mapping the algal mat in the northwest of Western Australia. The algal 

mat maps and data derived from this feasibility study are to support studies of the current 

environmental state, and change from recent times, with relevance to potential industrial 

development in the region. 

Algal mats are characterised by the presence of productive microbial communities at or near 

the surface of marine sediments, ranging from subtidal to supratidal environments. Sometimes 

the microbial concentration is obvious as colouration at the surface of the sediment, but 

sometimes the microbial concentration is active with the sediment profile, therefore not 

particularly apparent as sediment discolouration. 

A conventional field-based survey in mapping algal mats is accurate and useful in identifying 

algal mats in a small and target region, but it is ineffective and cost probative in a large area of 

observation. The aerial and satellite data provide an alternative to field-based surveillance in 

mapping algal mats for large spatial extents. The machine learning approaches, such as Support 

Vector Machine (SVM) and Random Forest (RF) classification in mapping land cover types 

have gained momentum in the last decade (Jiang et al. 2021). The rapid adoption of machine 

learning approaches is because of access to large processing/compute power readily available 

via various cloud computing providers such as Amazon Web Service and Google Earth Engine 

(Diniz et al. 2019) and machine learning approaches are efficient in mining and using spatial 

information (Dennis et al. 2012).   

In this study, we used the SVM model for algal mats classification with the aim to: 

1. Study the feasibility of satellite remote sensing data from Sentinel-2A/B in mapping 

algal mats in the study area shown in Figure 1. 

2. Develop a methodology and consider limitations to identify algal mats from the 

satellite data and generate an algal mat map to inform the state of the algal mat in the 

study regions. 

 

2. Study Sites 

The region of interest, shown in Figure 1, extends from the southern extent of Exmouth Gulf 

to approximately 118 degrees east. A localized region representing the focus of the proposed 

development is indicated in Figure 1 by a magenta rectangle (Eramurra AOI). A larger project 
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area is indicated by a cyan boundary (Horseflats AOI). The project also has an interest in the 

broader regional area bounded by blue in Figure 1 (Regional AOI). 

 

 
Figure 1. Top: Region of interest for remote sensing-based mapping comprises areas bounded by blue, cyan, and magenta. 
Bottom: The training data selection points provided by Leichhardt Salt Pty Ltd over the Eramurra AOI. 
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3. Data 

The optical satellite data from Sentinel-2 A/B (See Section 3.1 for the details) and Synthetic 

Aperture Radar (SAR) data from Sentinel-1 A/B from the European Space Agency were used 

in this study. The SAR dataset used comprised of 2016 composite of normalized backscatter 

data in VV polarization (Bauer et al. 2021).  The 1-second STRM Digital Elevation Model 

(DEM) from Geoscience Australia was also used. In addition, the ground coverage of the algal 

mat in the study area provided by Leichhardt Salt Pty Ltd was used in selecting the training 

points for the SVM model and validating the results. 

 

3.1 Satellite Remote Sensing Data and Indices 

The Sentinel-2A and 2B each provide 10-day repeat views of the globe, interleaved to provide 

views of the earth at intervals of 5 days. Sentinel 2A began operation in June 2015 and Sentinel 

2B in March 2017. Spatial resolution varies from 10 m to 60 m across 13 visible and infrared 

spectral bands (see Table 1). For this work, we used the Sentinel-2 data from 1st January 2018 

to 31st of December 2021 for Algal mat mapping.  The Normalized Bottom of Atmosphere 

Reflectance and Terrain corrected (NBART) product from Sentinel-2 A/B and cloud mask 

generated using python implementation of the `fmask` algorithm by Zu and Woodcock (2012) 

and Zhu et al. (2015). The NBART products are preferred over the top of the atmosphere 

reflectance because NBART products have the atmospheric and terrain effects corrected to 

account for atmospheric, sun and satellite angles. The NBART product allows for accurate 

comparison of imagery at different product locations and seasons because inconsistencies can 

arise between the satellite images at different time periods because of variations in atmospheric 

conditions, sun and satellite angles and terrain slope and aspects (Li et al. 2010).  
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Table 1. Sentinel-2 Multi-spectral Instrument (MSI) band information. 
 

wavelength resolution (m) 

Band 1 – Coastal aerosol 443 60 

Band 2 – Blue 492 10 

Band 3 – Green 560 10 

Band 4 – Red 665 10 

Band 5 – Vegetation red edge 704 20 

Band 6 – Vegetation red edge 740 20 

Band 7 – Vegetation red edge 783 20 

Band 8 – NIR 833 10 

Band 8A – Narrow NIR 865 20 

Band 9 – Water vapour 945 60 

Band 10 – SWIR – Cirrus 1373 60 

Band 11 – SWIR 1614 20 

Band 12 – SWIR 2202 20 

 

 

3.2 Annual Median Sentinel-2 Derived Indices 

The dominant land systems in the study region in the coastal areas comprise sandy beaches, 

mudflats, mangroves, and sparse vegetation. Towards the inland region, the land systems 

comprise sparse vegetation shrublands and red earth. The Red Soil Index (RSI), NDVI, 

Enhanced Vegetation Index (EVI) and NDWI derived from Sentinel-2 were used as input to 

the SVM model.  

 
Table 2. Sentinel-2 indices that were used were used as an input to the SVM Model. 

Enhanced Vegetation 

Index (EVI) 
𝐸𝑉𝐼 = 2.5 ∗ 	

𝐵𝑎𝑛𝑑8 − 𝐵𝑎𝑛𝑑4
(𝐵𝑎𝑛𝑑8 + 6.0 ∗ 𝐵𝑎𝑛𝑑4 − 7.5	 ∗ 	𝐵𝑎𝑛𝑑2) + 1 Huete et al. (2002) 

Normalised Difference 

Vegetation Index 

(NDVI) 

𝑁𝐷𝑉𝐼 =
𝐵𝑎𝑛𝑑4 − 𝐵𝑎𝑛𝑑8
𝐵𝑎𝑛𝑑4 + 	𝐵𝑎𝑛𝑑8 Rouse et al. (1974) 

Normalised Difference 

Water Index (NDWI) 
𝑁𝐷𝑊𝐼 =

𝐵𝑎𝑛𝑑3 − 	𝐵𝑎𝑛𝑑8
𝐵𝑎𝑛𝑑3 + 𝐵𝑎𝑛𝑑8  Gao (1996) 

Red Soil Index (RSI) 𝑅𝑆𝐼 =
𝐵𝑎𝑛𝑑4
𝐵𝑎𝑛𝑑2  

 
The indices listed in Table 2 were computed for each pass individually after masking the 

clouds. Because of the low temporal resolution (~5 days) of Sentinel-2 A/B data, pixels 

identified as a cloud meant the data was missing. To address the missing data due to clouds 
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and to normalize a seasonal anomaly, a yearly median composite of indices was generated. For 

a specific site, the median of 3 x 3 pixels was extracted from the index data and the median of 

3 x 3 pixels was selected to account for the fact that the pixels are affected by the adjacent 

pixels.  

 

3.3 In situ Data  

The pre-identified algal mat features vector data provided by Leichhardt Salt Pty Ltd are used 

in this study to select the training points of the algal mat for the SVM model and validate the 

classification results. In total, 2554 polygons and 120 points were provided with different algal 

mat classification types. Table 3 lists the classification types in the polygons and Table 4 for 

the point datasets. All the sites were located within the area identified as an Eramurra AOI (see 

Figure 1-bottom).  

 
Table 3. The algal mat classification type and the number of features identified in each class for polygon datasets. 

Number Algal mat Class / Description No of polygons 

1 Low near 539 

2 Low far 1393 

3 Limited activity 466 

4 Active mat 156 

 
Table 4. The algal mat classification type and the number of features identified in each class for point datasets 

Number Algal mat Class / Description No of Points 

1 Algal 94 

2 Algal and Acid Sulphate 23 

3 Grab 3 

 

 

3.4 Training Datasets for the SVM Model 

The training datasets for the SVM model were collected after overlaying the algal-mat 

polygons produced by Phoenix Environmental Sciences and provided by Leichhardt Salt Pty 

Ltd. A total of 1000 algal mat points (See Figure 1 (bottom) red points) were extracted from 

the regions inside the algal mat extents and visual interpretation of high-resolution Google 

Earth imagery. Further, 3221 points were selected from other regions that were representative 
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of other surface types listed in Table 5 after overlaying with polygons of different land types. 

Figure 1 (bottom) shows the locations of the training data points.  

 
Table 5. The number of points from different surface types used in selecting the training datasets. 

Number Land Types No. of Training 

Points 

1 Algal mat Points 1000 

2 Mangroves sparse Points 500 

3 Mangroves dense Points 500 

4 Shrubland Grass Points 1000 

5 Water Points 480 

6 Beach Points 741 

 

 

4. Methodology and Results: 

4.1 SVM Model 

Further, to help provide some context for inland land types, we included the DEM and Sentinel-

1 backscatter data in VV polarization described in Section 3. 

From the 2020 and 2021 annual median indices datasets, we extracted a median of 3 x 3-pixel 

values across all the training sites. Only yearly median indices from 2020 and 2021 were used 

in selecting the training datasets because the polygons overlaid to extract the points were from 

2020 and 2021.  

In total, 2,000 points were datasets from the algal mat and 6,442 points from other surface 

types were extracted as input for training the SVM model.  

In training the SVM model, we used 70% of the datasets, while 30% were retained for 

validation of the model. The validation results of the SVM model had an Accuracy of 94% 

kappa coefficient of 90.02% with a precision of 95% and a recall rate of 94% with F1-score of 

94.52%.  

 

4.2 SVM Model validation using in situ algal points  

A total of 120 in situ algal mat points were available in the point validation dataset. There were 

only 67 validation points left after filtering and selecting only points that were confirmed to 

have algal materials via the remark in the validation datasets remark section. The point 
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sampling validation for SVM model generated algal mat map was done by identifying if the 

validation points were identified as algal mat or not.  

 
 
Table 6. Validation results for true positive identification of algal mat. 

Year No of True Positive Detection  Accuracy (%) F1-Score (%) 

2018 64 95.52 97.70 

2019 63 94.03 96.92 

2020 62 92.54 96.12 

2021 62 92.54 96.12 

 

4.3 SVM Model validation using in situ vectorial features  

The algal mats classified by the SVM for the Eramurra region are presented from Figure 2 to 

Figure 5 for the years 2018 – 2021 respectively. We observe that the vectorial layer mapped as 

an algal mat is mostly classified as an algal mat by the SVM model. Note, the four colours 

representing the vector polygons produced by Phoenix Environmental Sciences are overlayed 

on the SVM grey region, but are also transparent, thus appear subdued in brightness. However, 

there are some areas, most notably bright green, where the SVM model has not identified the 

pixels as an algal mat.  

Table 7 presents the percentage of pixels the SVM model correctly identified from the different 

features in the in situ vector datasets. The percentage of pixels correctly identified within the 

vector features ranged from 77.23% to 97.26%.  The pixels in the `Low far` feature type were 

poorly classified by the SVM model when compared with other algal mat feature types. The 

`Low far` features were located primarily around the vicinity of mangroves.  

 
Table 7. The number of pixels identified correctly (expressed in percentage) as algal mat within each algal mat classification 
in in situ vector datasets. 

Year Accuracy (%) 

Low near Low far Limited activity Active mat 

2018 77.23 95.24 94.36 97.13 

2019 77.71 96.14 94.68 97.26 

2020 74.61 91.43 93.94 96.52 

2021 73.49 90.34 94.18 96.87 
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Figure 2. Algal mat classification result generated by the SVM Model for the year 2018 for the Eramurra Area of Interest (grey regions). The coloured regions represent the classification 
polygons produced by Phoenix Environmental Sciences. 
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Figure 3. Algal mat classification result generated by the SVM Model for the year 2019 for the Eramurra Area of Interest (grey regions). The coloured regions represent the classification 
polygons produced by Phoenix Environmental Sciences. 
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Figure 4. Algal mat classification result generated by the SVM Model for the year 2020 for the Eramurra Area of Interest (grey regions). The coloured regions represent the classification 
polygons produced by Phoenix Environmental Sciences. 
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Figure 5. Algal mat classification result generated by the SVM Model for the year 2021 for the Eramurra Area of Interest (grey regions). The coloured regions represent the classification 
polygons produced by Phoenix Environmental Sciences. 
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4.4 SVM classified algal mats 

The total area classified as algal mat by the SVM model is presented in Table 8 for the region 

bounded by all the sentinel-2 tiles in Figure 1.  

 
Table 8. Total area classified as algal mat by the SVM process for years 2018 to 2021. 

Year Total Area (km2) 

2018 3101 

2019 3187 

2020 3126 

2021 2705 

 

 

4.5 SVM classified productive algal mats – full coastal extent 

The spatial extent of validation/training data is confined to the regions depicted in Figure 1. 

Development of a robust algal mat classification scheme for regions far-removed from the 

training region must be approached with caution. Nonetheless, we have explored a simple 

approach to identifying two classes of algal mat based on NDVI, a remote sensing product 

related to productivity. For this work, we selected NDVI thresholds of Max NDVI >= 0.4 and 

STD NDVI >= 0.04 to classify algal mat pixels as productive. Only pixels that meet both 

thresholds are deemed “productive algal mat”. Pixels that fail one or both thresholds are 

considered low productivity. Figures 6 to 10 show the SVM derived algal mat regions for 

years 2018 to 2021. Algal mat regions are displayed as black. Pixels classed as productive are 

highlighted in orange. 

 

 

Phoebe Ranford
Sticky Note
Can we include the total area for regional productive algal mat ?  Like Table 11 for the smaller AOI?
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Figure 6. 2018 SVM derived algal mat (black) and productive algal mat (orange) based on MAX NDVI >=0.4 and STD NDVI >= 0.04. 
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Figure 7. 2019 SVM derived algal mat (black) and productive algal mat (orange) based on MAX NDVI >=0.4 and STD NDVI >= 0.04. 
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Figure 8. 2020 SVM derived algal mat (black) and productive algal mat (orange) based on MAX NDVI >=0.4 and STD NDVI >= 0.04. 
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Figure 9. 2021 SVM derived algal mat (black) and productive algal mat (orange) based on MAX NDVI >=0.4 and STD NDVI >= 0.04. 
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4.5 Productivity-based algal mat classification – Eramurra Area of Interest  

For algal mat classification we grouped in situ algal mat vectorial features listed in Table 3 

into three groups: "Active mat," "Limited activity," and "Low activity." The "Low activity" 

group is a combination of "Low near" and "Low far" vectorial features. 

Since NDVI values are directly correlated to algal mat productivity, the thresholds derived 

from the maximum NDVI values were used to assign algal mats generated by the SVM model 

into one of the three classes described above.  

The thresholds were derived from the maximum NDVI values computed for the year 2021 (as 

2021 is the closest year to 2022 when in situ algal mat features were created). All permutations 

of different statistical values presented in Table 9 were tested as possible threshold values and 

validated using 2063 random validation points selected from inside polygons from the three 

classes described above.  The top five results of maximum NDVI thresholds for multi-class 

algal mat validations are presented in Table 10.  From the results presented in Table 10, we 

defined the maximum NDVI threshold as:  

1. “Active mat” >= 0.566  

2. 0.255 <= “Limited activity” > 0.566 

3. 0.105 <= “Low activity" > 0.255 

 

To classify algal mat pixels into “Active mat”, “Limited activity”, and “Low activity” classes, 

we applied a condition where pixels that were previously classified as an algal mat by the SVM 

model must have yearly maximum NDVI values within the threshold values defined above. 

 
Table 9. Statistical values derived from maximum NDVI data for the year 2021 for different algal mat classes. 

    Statistics 

Class 

Max Min Mean Percentiles 

2.5 5 10 25 35 45 50 60 75 90 

Active mat 0.70 0.029 0.43 0.15 0.16 0.18 0.29 0.39 0.45 0.48 0.52 0.57 0.60 

Limited 
activity 

0.83 0.023 0.34 0.12 0.14 0.16 0.20 0.26 0.31 0.34 0.39 0.45 0.53 

Low 
activity 

0.74 0.045 0.20 0.11 0.11 0.12 0.14 0.15 0.16 0.17 0.18 0.23 0.32 

 

Table 10. NDVI thresholds with accuracy statistics for algal mat (which is a combination of “Active mat”, “Limited activity”, 
and “Low activity” class) for the five best results (Bold values were selected as the thresholds to differentiate different algal 
mat classes). 

 

Low activity 
NDVI 
Threshold 

Limited 
activity NDVI 
Threshold 

Active mat 
NDVI 
threshold Accuracy Recall F1-Scores 

1 0.105 0.255 0.566 0.891 0.887 0.942 
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2 0.105 0.255 0.478 0.887 0.887 0.940 
3 0.105 0.255 0.518 0.887 0.891 0.940 
4 0.105 0.255 0.598 0.887 0.887 0.940 
5 0.105 0.400 0.478 0.887 0.887 0.940 

 

The multi-class algal mat classifications for the Eramurra region are presented in Figures 10 to 

13 for the years 2018 to 2021 respectively. 
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Figure 10. Multi-class algal mat classification result generated by using the SVM model data with maximum NDVI thresholds for the year 2018 for the Eramurra Area of Interest. Solid colours 
show the regions defined by the SVM Model. Hatched regions show the regions defined by the reference map (Reference is 2022 validation vectorial layer supplied by Leichhardt). 
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Figure 11. Multi-class algal mat classification result generated by using the SVM model data with maximum NDVI thresholds for the year 2019 for the Eramurra Area of Interest. Solid colours 
show the regions defined by the SVM Model. Hatched regions show the regions defined by the reference map (Reference is 2022 validation vectorial layer supplied by Leichhardt). 
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Figure 12. Multi-class algal mat classification result generated by using the SVM model data with maximum NDVI thresholds for the year 2020 for the Eramurra Area of Interest. Solid colours 
show the regions defined by the SVM Model. Hatched regions show the regions defined by the reference map (Reference is 2022 validation vectorial layer supplied by Leichhardt). 
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Figure 13. Multi-class algal mat classification result generated by using the SVM model data with maximum NDVI thresholds for the year 2021 for the Eramurra Area of Interest. Solid colours 
show the regions defined by the SVM Model. Hatched regions show the regions defined by the reference map (Reference is 2022 validation vectorial layer supplied by Leichhardt). 
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An indication of annual variability in the regional extent of algal mat, and the variability in the 

regional extent based on the SVM model, is presented in Table 11 which shows the total area 

of SVM-derived algal mat for the Eramurra AOI (see Figure 1). 
 
Table 11. The total area of multi-class algal mat is based on the yearly NDVI maximum for the years 2018 to 2021. Note: 
total area is for the region enclosed in the Eramurra AOI in Figure 1. 

Class/Year Total Area (km2) 
 Low activity region Limited activity Region Active mat region 
2021 61.65 25.92 1.30 
2020 76.62 31.91 0.29 
2019 155.69 24.00 0.18 
2018 91.00 69.52 0.41 

 
 
 
6. Discussion 

The mapping of algal mat using the SVM model was carried out over the north western 

region of Western Australia for the years 2018 to 2021 using a combination of optical remote 

sensing data from Sentinel-2 A/B, DEM, and Synthetic Aperture Radar data from Sentinel-1 

A/B. Validation of the results was carried out based on data collected within the Eramurra 

Area of Interest (AOI). The validation analysis shows that the SVM model performed well in 

mapping the general extent of algal mat as well as providing an indication of the extent of 

productive algal mats. 

The SVM model is “tuned” to the training data representing algal mat in the Eramurra AOI 

thus confidence in the map products further afield, such as towards the Exmouth Gulf, may 

be considered somewhat less than within the Eramurra AOI. The extensive maps presented in 

Figures 6 to 9 show a representative distinction between high and low productivity. Extensive 

and widespread field-based validation would be required to provide an indication of accuracy 

of map products outside the Eramurra AOI. It is interesting to note that, based on visual 

inspection of Figures 10 to 13, the SVM model appears to perform better in the southern 

extent of the Phoenix Environmental Sciences regions compared to the northern extent. There 

is a paucity of validation points in the northern extent.  

We showed a method based on NDVI annual statistics and maximum values, to provide an 

indication of algal mat productivity. Comparison of the mapped SVM productive algal mat 

extent and the in situ-based maps of active mat are very encouraging. Users of the SVM 

method of algal mat mapping could consider more complex approaches to integrating NDVI 

values spatially and temporally to infer relative annual algal mat total regional productivity. 
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