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1. Background 

We report here methods to produce maps showing the Mangrove extent along the northwest 

coast of Western Australia using satellite remote sensing data from Sentinel-2 A/B, plus a 

demonstration of the potential for high spatial resolution mapping and Pléiades Neo. The 

mangrove maps and data derived from this feasibility study are to support studies of current 

environmental state, and change from recent times, with relevance to potential industrial 

development in the region. 

There are many approaches to mapping mangroves that use Light Detection and Ranging 

(LiDAR) and optical remote sensing data combined with machine learning or conventional 

targeted image-based processing. Conventional image-based mangrove identification is useful 

in identifying mangrove in a small region, but it is ineffective in large area of observations. 

The machine learning approaches, such as Support Vector Machine (SVM) and Random Forest 

(RF) classification in mapping mangrove, have gained momentum in the last decade (Jiang et 

al. 2021). The rapid adoption of machine learning approaches is mainly due to much improved 

access to large processing/compute power readily available via various cloud compute 

providers such as Amazon Web Services and Google Earth Engine (Diniz et al. 2019), and 

increasing recognition that machine learning approaches are efficient in mining and using 

spatial information (Dennis et al 2012). 

In this study, we used the SVM model for mangrove classification with aims to: 

1. study the feasibility of satellite remote sensing data from Sentinel-2 A/B in mapping 

mangrove extent in the study area shown in Figure 1.  

2. develop a methodology, and assess limitations, to identify mangrove from Sentinel 

satellite data and generate a mangrove map to inform the extent of mangrove in the 

study region. 

 

2. Study Sites 

The region of interest, shown in Figure 1, extends from the southern extent of Exmouth Gulf 

to approximately 118 degrees east. A localised region representing the focus of proposed 

development is indicated in Figure 1 by a magenta rectangle (Eramurra AOI). A larger project 

area is indicated by a cyan boundary (Horseflats AOI). The project also has an interest in the 

broader regional area bounded by green in Figure 1 (Regional AOI). 
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Figure 1. Top: Region of interest for remote sensing-based mapping comprises areas bounded by green, cyan and magenta. 
Bottom: The in-situ mangrove classification sites provided by Leichhardt Salt Pty Ltd over the Eramurra AOI. 

 

3. Data 

Optical satellite data from Sentinel-2 A/B (See Section 3.1 for details) and Synthetic Aperture 

Radar (SAR) data from Sentinel-1 A/B from the European Space Agency were used in this 

study. The SAR dataset used comprised a composite of normalized backscatter data in VV 

polarization collected in 2016 (Bauer et al. 2021).  The 1 second STRM Digital Elevation 

Model (DEM) from Geoscience Australia and previously classified map data of mangrove 
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produced by Global Mangrove Watch (Bunting et al., 2018) were also used. In addition, a 

vector data set originally created and produced by O2Marine (2022) in 2021 showing ground 

coverage of mangroves in the study area was made available by Leichhardt and was used in 

validating the results. 

 

3.1 In-situ Data 

The pre-identified mangrove land features vector data provided by Leichhardt were used in this 

study to validate the classification results. In total, 1321 polygons were provided with different 

mangrove classification types as listed in Table 1. There were 21 polygons with missing class 

attributes which were removed from the analysis. The final in-situ sites contained 1320 

features, of which 865 were from the year 2020 and 455 from the year 2021. All the sites were 

located within the area identified as Eramurra AOI (see Figure 1-bottom). The mangrove 

classes 1-4 in Table 1 represent regions which had low density mangrove cover mixed with 

other land surface types. The mangrove classes 5-8 represent regions that had high densities of 

mangrove cover. 

 
Table 1. The mangrove classification types and number of features identified in each class. 

Number Mangrove 

Density 

Mangrove Class No of polygons 

2020 2021 

1 Low Avicennia marina (Scattered) 194 294 

2 A. marina / Ceriops australis (Scattered) 31 9 

3 Rhizophora stylosa (Scattered) 10 0 

4 C. australis (Scattered) 6 1 

5 High R. stylosa / A. marina (Closed canopy mixed) 143 33 

6 A. marina closed canopy (Landward edge) 146 23 

7 R. stylosa (Continuous cover) / R. stylosa (Continuous 
cover) 

171 0 

8 A. marina (Seaward edge) 164 75 

 

 

 

 

3.2 Satellite Remote Sensing Data 

The Sentinel-2A and 2B each provide 10 day repeat views of the globe, interleaved to provide 

views of the earth at intervals of 5 days. Sentinel 2A began operation in June 2015 and Sentinel 

2B in March 2017. Spatial resolution varies from 10 m to 60 m across 13 visible and infrared 
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spectral bands (see Table 2). For this work we used the Sentinel-2 data from 1st January 2018 

to 31st of December 2021 for mapping.  The Normalized Bottom of Atmosphere Reflectance 

and Terrain corrected (NBART) product from Sentinel-2 A/B and cloud mask generated using 

a python implementation of the `fmask` algorithm by Zu and Woodcock (2012) and Zhu et al 

(2015). The NBART products are preferred over the top of the atmosphere reflectance because 

NBART products have the atmospheric and terrain effects corrected to account for 

atmospheric, sun and satellite angles. The NBART product allows for accurate comparison of 

imagery at different product locations and seasons because inconsistencies can arise between 

the satellite images at different time periods because of variation in atmospheric conditions, 

sun and satellite angles and terrain slope and aspects (Li et al, 2010).  

 
Table 2. Sentinel-2 Multi-spectral Instrument (MSI) band information. 

 
wavelength resolution (m) 

Band 1 – Coastal aerosol 443 60 

Band 2 – Blue 492 10 

Band 3 – Green 560 10 

Band 4 – Red 665 10 

Band 5 – Vegetation red edge 704 20 

Band 6 – Vegetation red edge 740 20 

Band 7 – Vegetation red edge 783 20 

Band 8 – NIR 833 10 

Band 8A – Narrow NIR 865 20 

Band 9 – Water vapour 945 60 

Band 10 – SWIR – Cirrus 1373 60 

Band 11 – SWIR 1614 20 

Band 12 – SWIR 2202 20 

 

 

 

4. Methodology and Results: 

4.1 Time Series Analysis of Sentinel-2 Derived Indices 

In the preliminary investigation, Leichhardt showed that the ratio of Sentinel-2 bands 4 and 2 

highlights the Horseflat land system, which is a significant clay dominated land system in our 

study region. The ratio Band4/Band2 has been assigned the name “Red Soil Index“ (RSI) in 

this study, because higher RSI index values highlight the predominantly red coloured land 

system more prominently. In addition to the RSI, we also investigated the Normalised 
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Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI) and Normalised 

Difference Water Index (NDWI), derived from Sentinel-2 NBART data. Vegetation, and in 

this case in particular, mangrove, is identified by a high NDVI values throughout the year. 

Mangrove typically grow in intertidal zones and are therefore adjacent to water which may be 

identified using the NDWI.  

 
Table 3. Sentinel-2 indices that were explored as input into SVM Model. 

Enhanced Vegetation 

Index (EVI) 
𝐸𝑉𝐼 = 2.5 ∗ 	

𝐵𝑎𝑛𝑑8 − 𝐵𝑎𝑛𝑑4
(𝐵𝑎𝑛𝑑8 + 6.0 ∗ 𝐵𝑎𝑛𝑑4 − 7.5	 ∗ 	𝐵𝑎𝑛𝑑2) + 1 Huete et al. (2002) 

Normalised Difference 

Vegetation Index 

(NDVI) 

𝑁𝐷𝑉𝐼 =
𝐵𝑎𝑛𝑑4 − 𝐵𝑎𝑛𝑑8
𝐵𝑎𝑛𝑑4 + 	𝐵𝑎𝑛𝑑8 Rouse et al. (1974) 

Normalised Difference 

Water Index (NDWI) 
𝑁𝐷𝑊𝐼 =

𝐵𝑎𝑛𝑑3 − 	𝐵𝑎𝑛𝑑8
𝐵𝑎𝑛𝑑3 + 𝐵𝑎𝑛𝑑8  Gao (1996) 

Red Soil Index (RSI) 𝑅𝑆𝐼 =
𝐵𝑎𝑛𝑑4
𝐵𝑎𝑛𝑑2  

  

The indices listed in Table 2 were computed for each satellite pass individually after masking 

the clouds. For the two selected mangrove sites, which had dense mangrove (labelled as 

Mangrove in Figures 2-5) and scattered mangroves (labelled as Mangrove_Sparse_Mud in 

Figures 2-5), the median of 3 x 3 pixels was extracted from the index data to analyse the 

temporal pattern. The median of 3 x 3 pixels was selected to account for the fact that the pixels 

are affected by some degree of spatial variability as well as pixel adjacency issues. Time series 

plots of the median index values are shown in Figures 2- 5 respectively. 

 

 
Figure 2. Time series plot of EVI for the mangrove dense and sparse mangrove sites. 
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Figure 3. Time series plot of NDVI for the mangrove dense and sparse mangrove sites. 

 
Figure 4. Time series plot of NDWI for the mangrove dense and sparse mangrove sites. 

 
Figure 5. Time series plot of RSI for the mangrove dense and sparse mangrove sites. 

 

From the time series analysis of vegetation indices, EVI (Figure 2) and NDVI (Figure 3), there 

are similarities between the two indices. Both EVI and NDVI show variability across different 

years, but consistently similar patterns between the two vegetation indices is observed. Because 

of similar temporal attributes of NDVI and EVI, the EVI was omitted from further analysis. 

The average value of NDWI throughout different years was approximately -0.4 and -0.6 for 
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sparse mangrove and dense mangrove sites indicating that for these selected locations the 

surfaces types are not likely to be dominated by water. The RSI time series showed that the 

dense mangrove type was not showing a strong red soil index, as may be expected from a dense 

vegetative canopy. The sparse mangrove site displayed a higher RSI, which is possibly 

indicative of a more visible red soil surface type being visible between the sparse canopy cover. 

The apparent seasonal cycle evident, most notable in the RSI signal, is interesting but as yet 

difficult to interpret. 

 

4.2 Monthly Statistics of Different Land Surfaces 

To decrease the impact of missing data due to clouds, monthly median composites of indices 

were generated, effectively producing composites without, or at least with a much-reduced 

frequency of, missing data. To assess variability in the NDVI, NDWI and RSI values for 

different dominant land surface types in the study region, we visually identified and selected a 

range of land surface types using a high-resolution Google Earth satellite image and generated 

monthly statistics for each land type using the 2018-2021 index datasets. The land surface types 

identified included blue mud, grey mud, mudflat at higher ground, sandbar, PEC (proxy for the 

red soil) and mangrove. The monthly NDVI, RSI and NDWI box-plots for the different land 

types are presented in Appendices 1 to 3 respectively.  For each plot in the Appendices the data 

for each month represents data across all years from 2018 to 2021 inclusive.  

From the monthly index statistics for different surface types represented in the Appendix 1, we 

observe that the NDVI of mangrove is consistently higher than the other land surface types. 

The NDVI median values of mangrove sites across all the months were all greater than 0.54, 

while the median value for other land surfaces were all less than 0.21. The difference and 

separability of the NDVI values between mangrove and other land surface types shows that the 

NDVI can be used with confidence in distinguishing the mangrove from the other land systems 

sampled. For the mangrove, the monthly median RSI values were all less than 1.41 while other 

land systems were greater than 1.5, except for the sandbar which was highly variable (see 

Appendix 2 for details). Further, in Appendix 3, we observe that the mangrove is characterised 

by NDWI less than -0.57 while other land systems were greater than -0.52.  The distinct 

differences between mangrove and all other land surface types suggests that we can use NDWI, 

NDVI and RSI to classify satellite image pixels as mangrove. 
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4.3 Support Vector Machine Model 

Support vector machine (SVM), a binary classification algorithm, is efficient at solving both 

linear and non-linear classification problems (Wang et al, 2018). The SVM model is a 

supervised learning method that uses a set of training data with labelled feature classes to build 

a model that categorizes new data into one or other feature based on the training dataset. Based 

on previous studies (Lien and Lars, 2017) and preliminary experimental results, we chose the 

SVM module available at https://scikit-learn.org/stable/modules/svm.html with radial basis 

function (RBF) kernel. 

 

4.4 SVM Model 

From Sections 4.1 and 4.2 we observe that there was no clear temporal trend that was obvious 

and useful in aiding the classification of mangrove data. Thus, we aggregated the monthly 

median indices data from 2018 to 2021 and generated one median dataset for each of the NDVI, 

NDWI and RSI. The all-temporal aggregated median values of each index across 4 years were 

used in extracting training and validation datasets. Further, to help provide some context for 

including classification of inland/dryland vegetation, man-made green surfaces (golf course, 

green parks, etc) and mangrove, we included the DEM and Sentinel-1 backscatter data in VV 

polarization described in Section 3. 

The training and validation datasets for the SVM model were collected after overlaying the 

mangrove extents from the 2016 Global Mangrove Watch (GMW) datasets (Lucas et al. 2014, 

Bunting et al.2018). A total of 728 mangrove points (See Figure 1, blue points) were extracted 

from the regions inside the mangrove extents indicated by the 2016 GMW and visual 

interpretation of high-resolution Google Earth imagery. Further, 2287 points were selected 

from other regions that were representative of other surface types (See Figure 1, orange points). 

In training the SVM model, we used 70% of the datasets, while 30% were retained for 

validation of the model. The validation results of the SVM model had an accuracy of 99.1% 

and kappa coefficient of 99.71% with a precision of 98.07 % and recall rate of 98% with an 

F1-score of 98.07%. 

 

4.5 SVM Classified In-Situ Validation results and Mangrove Map 

The SVM Model was used in classifying mangrove using the yearly (2018-2021) median 

composites of NDVI, RSI, NDWI, DEM and Sentinel-1 VV backscatter datasets. Only the 

Sentinel-2 indices—NDVI, RSI and NDWI were aggregated for yearly median data. The DEM 

and Sentinel-1 backscatter datasets were kept the same for all the years because DEM is not 

https://scikit-learn.org/stable/modules/svm.html
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expected to change across different years, likewise, the Sentinel-1 backscatter which correlates 

with surface roughness was assumed to be relatively constant across years.  

Since our SVM Model is only trained to assess two features, mangrove and not-mangrove, we 

were not able to validate different mangrove classification types available in Table 1. However, 

results do give an indication of the success of the Sentinel-based SVM mangrove mapping with 

respect to the O2Marine maps of both low- and high-density mangrove systems. We combined 

the two groups, low- and high-density mangrove features, identified in Table 1. The validation 

results, which present the number of pixels identified as mangrove in the high- and low-density 

mangrove features/polygons and the total number of pixels identified as mangrove by the SVM 

model within the features is presented in Table 4. 

 

 
Table 4. Total number of pixels in the validation features (Low- and High-density mangrove coverage types) and the number 
identified by the SVM model as mangrove within the ground validation features shown. 

Mangrove 

Density 

2020 2021 

Total Mangrove Pixels 

Count 

SVM Model Count Total Mangrove Pixels 

Count 

SVM Model Count 

Low 

Density  

62,911 28,397 9,230 5,966 

High 

Density 

65,348 62,469 3,331 2,980 

 

The classification maps over the validation sites are presented in Figures 6-9. Figures 6 and 7 

represent low-density mangrove coverage for the years 2020 and 2021 respectively. The green 

regions represent only those areas classed as low-density mangrove by the O2Marine survey. 

The red regions are the regions classed as mangrove by the SVM process within the bounds of 

the low-density survey map. We observe that the total number of pixels identified as mangrove 

by the SVM model is relatively low when compared with pixels identified as low-density 

mangrove by the survey, only 45.14% in 2020 and 64.63% in 2021. This is largely due to the 

presence of other land surface types in the features/polygons of the low-density mangrove type. 

The SVM model results were identifying pixels that were only mangrove type while the low-

density survey features contained pixels from other land types combined with mangrove. 

Figures 8 and 9 show high-density mangrove as identified by the survey, shown as green, and 

the pixels within this region identified as mangrove by the SVM model for the year 2020 and 

2021 respectively. The commonly classified pixel results were high, with 95.59% in 2020 and 

89.46% in 2021 identified as mangrove by the SVM model.  
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Figures 10 to 13 show the SVM model classified mangrove maps for the years 2018 to 2021 

respectively.  
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Figure 6. Low Density Mangrove validation results for the year 2020. The green colour represents the Ground-truth mangrove map and the red colour represents the mangrove map generated 
using the SVM Model.  Note: The SVM results (red) are overlaid over the green. 
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Figure 7. Low Density Mangrove validation results for the year 2021. The green colour represents the Ground-truth mangrove map and the red colour represents the mangrove map generated 
using the SVM Model. 
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Figure 8. High Density Mangrove validation results for the year 2020. The green colour represents the Ground-truth mangrove map and the red colour represents the mangrove map generated 
using the SVM Model. 
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Figure 9. High Density Mangrove validation results for the year 2021. The green colour represents the Ground-truth mangrove map and the red colour represents the mangrove map generated 
using the SVM Model.
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Figure 10. 2018 Mangrove Map generated from the SVM model. 
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Figure 11. 2019 Mangrove Map generated from the SVM model. 
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Figure 12. 2020 Mangrove Map generated from the SVM model. 
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Figure 13. 2021 Mangrove Map generated from the SVM model.
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4.6 Selected details of SVM Mangrove Maps 

Figure 14 shows a sample region depicted by a Google Earth image dated November 2018, the 

most recent available in Google Earth Pro. Mangroves are easily discerned by eye and show a 

gradation in density from full canopy cover to very sparse. Figure 15 shows the same image 

with the O2Marine mangrove boundaries overlaid. Note, the O2Marine survey included classes 

ranging from full canopy cover to sparse. Figure 16 shows the same as Figure 15 with an 

overlay of mangrove classification pixels sourced from Digital Earth Australia (DEA) 

Mangrove Canopy Cover (Lymburner et al. 2020), which is a derivation of the Global 

Mangrove Watch (Lucas et al. 2014, Bunting et al.2018) data. The DEA data are displayed as 

black, grey and white shades which represent 20%-50%, 50%-80% and 80%-100% canopy 

cover. Figure 17 shows the SVM mangrove extent overlaid in green on the O2Marine survey 

boundaries. Figure 18 shows the DEA data overlaid on the SVM and O2Marine boundaries. A 

feature to note across all images is the river course running south to north through the middle 

of the image. The O2Marine and SVM maps do not include the river as mangrove cover 

however the DEA map does. The coverage of the SVM pixels is larger and more aligned with 

the O2Marine survey boundary, which in turn is strongly aligned with the underlying extent of 

mangroves shown in the Google Earth image. Of note are the regions located at the western 

side of the scene where the DEA data fails to detect any mangrove cover. An important issue 

depicted in these images is the classification of very sparse mangrove density as mangrove by 

the O2Marine survey, in contrast to the remote sensing methods where very sparse mangrove 

is not detected in a per-pixel method. There are some pixels within the O2Marine boundary 

that have no mangrove cover at all, however they are still classed as mangrove cover. It appears 

as though the O2Marine boundary is drawn to encompass full extent of mangroves by spanning 

some areas with no mangroves. This point is not made to highlight an error or misclassification, 

rather to highlight the distinction between terms such as canopy cover, canopy density and 

mangrove extent.  
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Figure 14. Google Earth Image. November 2018. Note the regions of mangrove cover ranging from dense to very sparse. Also note the appearance of the river course running south-north 
through the scene. 
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Figure 15. Google Earth Image with O2Marine (2021) survey mangrove boundaries. 
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Figure 16. Google Earth Image with O2Marine (2021) survey mangrove boundaries (red) and DEA  2019 data. Black/Grey/White represent mangrove density from low to high. 
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Figure 17. Google Earth Image. With O2Marine (2021) survey mangrove boundaries (red) and EnSTaR SVM mangrove extent for 2019 (green). 
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Figure 18. Google Earth Image. With O2Marine (2021) survey mangrove boundaries (red) with overlays of EnSTaR SVM mangrove extent for 2019 (green) and DEA 2019 data. 
Black/Grey/White represent mangrove density from low to high. 
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Figure 19 shows a Google Earth image from 2019 showing a detail of coastline where 

mangrove extent is easily discerned by visual inspection. Overlayed is the extent of the 

mangroves as defined by the O2Marine survey, indicated by the red boundaries. Figure 20 

shows the same region as Figure 19 but with DEA mangrove density derived from 2020 

Landsat data. Figure 21 shows the same region but with the SVM model-derived mangrove 

extent indicated by green. Note the DEA data are overlayed on the SVM data. The SVM data 

appears to align particularly well with the mangrove cover displayed in the underlying 

Google Earth image. 

Figure 22 shows a 2019 Google Earth image displaying a larger extent of coastline with some 

sections of fringing mangrove. Figure 23 shows the same image with SVM-derived 

mangrove extent for 2020 highlighted in green. Figure 24 shows the same image with DEA 

mangrove density overlayed. Note the large extents of coastline where the Landsat-based 

DEA data files to detect mangrove.  

 

 
Figure 19. Google Earth image showing detail of mangrove and O2Marine survey-derived mangrove extent in red. 

 



 28 

 
Figure 20. Google Earth image showing detail of mangrove, O2Marine survey-derived mangrove extent and DEA mangrove 
cover. Black/Grey/White represent mangrove density from low to high. 

 
Figure 21. Google Earth image showing mangrove detail, O2Marine survey-derived mangrove extent (red boundary), DEA 
mangrove density and SVM derived mangrove map. DEA data black, grey and white represent mangrove density from low to 
high. 
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Figure 22. Google Earth image from 2019 showing a region of coastline with fringing mangroves. 
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Figure 23. Google Earth image from 2019 with SVM-drived mangrove extent for 2020 highlighted in green. 
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Figure 24. Google Earth image from 2019 with SVM-derived mangrove extent shown in green and DEA 2020 mangrove 
density shown in black, grey and white. 
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4.7 High and Low-density Mangrove Classification 

The SVM model’s performance over the low-density mangrove regions was relatively poor 

compared to performance over high density mangrove regions. To include the misclassified 

pixels over the low-density mangroves, additional post-SVM classification steps were 

developed to include pixels that were excluded by the SVM model. Pixels identified via this 

method are henceforth identified as low-density in this report.  

The method to include pixels previously excluded by the SVM method is based on the 

following decision tree: 

1. Select 3 x 3 neighbouring pixels for pixels identified as mangroves by the SVM model 

(for the first iteration) and then in subsequent iterations includes pixels identified as 

mangrove by this method. 

2. If neighbouring pixels fulfill the following conditions, then each identified pixel is 

classified as a low-density mangrove pixel: 

a. NDVI >= 0.2492 

b. RSI >= 1.931 + 2 * 0.28 (standard deviation) 

c. S1-Backscatter >= -110.60 

3. Method 1 and 2 were iteratively repeated until the difference between previous and 

current map versions were less than 5%.  

NDVI, RSI and S1-Backscatter values are the mean values from the median NDVI, RSI and 

Sentinel-1 Backscatter values inside the low-density validation polygon presented in Table 1. 

The NDVI threshold of 0.2492 and S1-Backscatter are the mean values across low-density 

polygons. The mean RSI threshold of 1.931 was adjusted by 2 * 0.28 (standard deviation across 

low-density polygon pixels) because RSI tends to be high over low-density mangrove regions 

since low-density mangrove regions have more exposed bare ground, which usually translates 

to high RSI. The high and low-density mangrove classification maps over the validation layers 

are presented in Figure 14-17.  
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Figure 25. Low and High-Density Mangrove map for year 2018. The red shaded colour represents the high-density mangrove validation layer and filled green colour represents the high-
density mangrove result.  The yellow shaded colour represents the low-density mangrove validation layer and filled yellow colour represents the low-density mangrove result. 
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Figure 26. Low and High-Density Mangrove map for year 2019. The red shaded colour represents the high-density mangrove validation layer and filled green colour represents the high-
density mangrove result.  The yellow shaded colour represents the low-density mangrove validation layer and filled yellow colour represents the low-density mangrove result. 
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Figure 27. Low and High-Density Mangrove map for year 2020. The red shaded colour represents the high-density mangrove validation layer and filled green colour represents the high-
density mangrove result.  The yellow shaded colour represents the low-density mangrove validation layer and filled yellow colour represents the low-density mangrove result. 
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Figure 28. Low and High-Density Mangrove map for year 2021. The red shaded colour represents the high-density mangrove validation layer and filled green colour represents the high-
density mangrove result.  The yellow shaded colour represents the low-density mangrove validation layer and filled yellow colour represents the low-density mangrove result. 

 



4.8 Low and High-density Classification Validation results  

To undertake validation of high and low-density mangrove classification we extracted 689 and 

818 pixels randomly from high and low-density validation layers respectively. A minimum of 

100 metres separation was maintained between the extracted validation points. The year 2021 

was used for the validation since the validation layers were created in 2021. The result of the 

validation is presented in Table 5.  From the results, it is evident that that high-density 

mangrove is classified better in comparison to low-density mangrove. Low-density validation 

layers incorporate areas that are sparely covered by mangroves and includes bare-ground and 

other vegetations. This classification method is limited to identifying mangrove at pixel level 

so result for low-density mangrove is poorly performed. 

 
Table 5. Validation results for Low and High-Density Mangrove classification result. 

 Accuracy (%) F1-Score (%) 

Low-Density 30.53 46.78 

High-Density 95.67 97.79 

 

4.9 Low and high density processing extent 

The processing of Sentinel data to grow the mapped extent of mangrove was undertaken for a 

region captured by 2 Sentinel tiles centred on the region of interest (See Figure 1 for the 

coverage of Sentinel tiles). The roughly 116 E to 116.55 E region process is shown in Figure 

29. Note the high proportion of low density (white) identified in the SW corner. The total 

areas of high and low density mangrove are approximately 16.6 km2 and 8.1 km2. This shows 

the new method to identify low density mangrove has increased the mapped areas by 

approximately 33%. 
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Figure 29. Extent of updated low density(white) and high density(black) mangrove mapping. 

 

 

5. Mapping sparse mangrove using Neo data 

Pléiades Neo Imager is carried on board a constellation pair of commercial satellites launched 

in 2021. Neo provides very high spatial resolution multispectral data. Table 6 lists the 

spectral band information.  

It is clear from the Sentinel results presented earlier that Sentinel sensors perform poorly at 

detecting very low density, or sparse, mangrove. For this work we aimed to assess the 

applicability of Neo data for detecting, mapping and quantifying the spatial coverage of 

sparse mangrove.  
Table 6. Pléiades Neo spectral band information. All bands are 1.2 m resolution at nadir. Data are pansharpened to 0.3. 

 
wavelength Spatial resolution 

Panchromatic 450 - 800 0.3 

Band 1 – Red 619 - 690 1.2 

Band 2 – Green 533 - 591 1.2 

Band 3 – Blue 446 - 520 1.2 

Band 4 – NIR 768 - 888 1.2 

Band 5 – Red edge 697 - 750 1.2 

Band 6 – Deep blue 416 - 457 1.2 

 

A sample of Neo data was obtained, with capture date 21st Jan 2022.  Figure 30 shows the 

location of the Neo data overlayed on a Google Maps image. The spatial extents of the data 

are 116.2028E to 116.2969E and 20.8577S to 20.8951S. The data were divided into 1 km2 

regions for processing, shown in Figure 31.  
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Figure 30. Neo data overlayed on Google map image. 

 

 
Figure 31. Neo data true colour image showing the 1 km2 processing regions. 

 
Spectral bands 1 and 4 were used to calculate NDVI, then a threshold of 0.35 was used to 

identify mangrove. Figures 32 to 35 show an example of mangrove mapping for region C4. 

Figure 32 shows a true colour image based on NEO bands 1-3. Figure 33 shows the same true 

colour image with results of Sentinel-based mangrove mapping. Each Sentinel pixel is 10 m x 

10 m. The black pixels represent dense mangrove, and the grey pixels represent low density 

mangrove identified by the methods explained in Section 4.7. It is clear by visual inspection 

that some sparse mangroves are not identified by Sentinel, as well as some “fringing 

mangroves” along the river edge not being identified.  Figure 34 shows the Neo true colour 
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image with pixels identified using the NDVI threshold, coloured white. Figure 35 shows the 

Sentinel mapping results combined with the Neo mapping results. Calculations of classified 

pixel areas show dense mangrove 165,799 m2, low density mangrove 75,831 m2, and sparse 

mangrove 17,783 m2. The total image area is 1 km2, thus the proportions of mangrove classes 

are 16.6%, 7.6% and 1.6% respectively. 

 
Figure 32. New true colour image for region C4. 
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Figure 33. Neo true colour image with Sentinel dense (black) and "less dense" (grey) mangrove. 
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Figure 34. Neo True colour image with Neo-NDVI regions (white). 
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Figure 35. Neo true colour image with Sentinel dense (black), "less dense” (grey) and Neo-NDVI sparse mangrove (white). 

 

Appendix 1 contains true colour images for all the regions shown in Figure 30, as well as 

figures akin to Figure 34, showing overlayed Sentinel and Neo NDVI mangrove classes. 

Calculations of areas for each region labelled in Figure 31, and shown in Appendix 1, show 

the total area of Neo data is approximately 27.4 km2. For this region, the proportion of dense 

mangrove identified by Sentinel is 26.7% and low density identified as 5.1%. The proportion 

of sparse mangrove identified by Neo is 0.8%.  
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6. Discussion 

The mapping of mangrove using the SVM model was carried out over the north western region 

of Western Australia for the years 2018 to 2021 using a combination of optical remote sensing 

data from Sentinel-2 A/B, DEM, and Synthetic Aperture Radar data from Sentinel-1 A/B. The 

validation of the results shows that the SVM model performed well in mapping the high-density 

mangrove types but performed less well in identifying low-density mangrove. The lower 

validation percentage of the SVM model in the low-density mangrove area might be because 

the SVM model is developed to identify mangrove at per-pixel level, while the ground-truth 

contained the features polygonised irrespective of the presence of pixels from other land types. 

Better quantified validation data, at per-pixel levels, needs to be used to improve the validation 

of the results in a more robust manner. 

The SVM model was particularly developed for the study site and the implication of applying 

the model to other regions needs to be studied. Further, the SVM model was trained to identify 

pixels with only two features, mangrove and not-mangrove, thus this limits the identification 

of pixels that might contain mixed surface types in a pixel. Essentially, we may interpret the 

classification of a pixel as “mangrove” to be a “pixel dominated by mangrove”, and a pixel 

classed as “not mangrove” as a “pixel not dominated by mangrove”. The results of this work 

suggest strongly a need for the community to improve the description or classification of 

“ground type” with a more considered approach to density of cover and mangrove extent. 

To overcome the poor performance of Sentinel in identifying low density mangrove, we 

developed a method to search for pixels adjacent to previously identified mangrove pixels. 

Based on thresholds of NDVI, PSI and S1-backscatter, we were able to “grow” the mangrove 

regions to identify low density regions. The region selected for application of the low density 

identification encompassed the extent of 2 Sentinel pixels, centred on the region of interest 

and the location of validation data. This method identified approximately a further 33% of 

mangrove extent. It is to be noted that the SW region appeared to show a high proportion of 

low density mangrove. Visual inspection of results suggests mangroves were poorly 

identified by the first step, identification of high density, but well identified by the second 

low density identification step. 

Although the identification of low density mangrove using Sentinel data was improved, there 

were clearly some regions of very sparse mangrove that were not identified. We acquired a 

sample of Pléiades Neo data and developed an NDVI approach to identifying mangrove at 30 

cm spatial resolution. The results suggest a high confidence, based on visual assessment of 

true colour images compared to the map results. We do not have ground truth data at the 
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accuracy or spatial resolution required to undertake a rigorous assessment of Neo mapping 

accuracy. For the sample region (~ 27.4 km2), Sentinel identified approximately 7.3 km2 high 

density and 1.4 km2 low density. Neo identified approximately 0.2 km2. The Sentinel low 

density method identified approximately 13% extra mangrove extent than the high density 

mapping.  

It is important to be aware of the spatial scale of raster-based mapping. The Sentinel data is at 

10 m resolution and the Neo data is at 0.3 m resolution. We have not attempted to downscale 

the Neo results to a 10 m representation, thus a direct comparison of “total cover” or “extent” 

mapped by Neo should not be undertaken without careful consideration of the required 

mapping or monitoring aims. Nonetheless, we have shown the great potential of Neo data for 

mapping mangrove to a very high spatial resolution and for regions of sparse cover that are 

typically not identified by moderate resolution sensors. 

The Sentinel 2 satellites were launched in 2015 and 2017, therefore there is a large and 

growing archive of global satellite data that can be used to study baseline metrics and 

temporal variability of mangrove ecosystems. The Pléiades Neo Imagers were launched in 

2021 and they do not capture the whole globe routinely, thus the archive of historical data is 

sparse. 
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Appendix 1 
 
Neo images showing true colour and combined Sentinel and Neo-mapped mangroves. 
Sentinel results at 10 m resolution, Neo results at 0.3 m resolution.  
Sentinel results. Black = dense mangrove, grey = low density mangrove. 
Neo results. White = sparse  
The tables show the areas of mangrove for each image region. 
 

TOTALS m2 27415397 7331788 1393353 213232 

TOTALS km2 27.415397 7.331788 1.393353 0.213232 
          

% 100.00% 26.74% 5.08% 0.78% 
          

  image high low sparse 

A1  -        

A2  -        

A3 267936 3731 2029 446 

A4 930823 274350 36235 3954 

A5 927993 202322 37832 11762 
          

B1  -        

B2  -        

B3 665764 30080 36950 2344 

B4 1000100 536033 100920 14210 

B5 881058 150563 26861 8107 
          

C1  -        

C2 78438 0 0 0 

C3 974878 1708 1836 1213 

C4 1000100 165799 75831 17783 

C5 794381 23923 24644 5516 
          

D1  -        

D2 439050 243094 27921 2820 

D3 1000100 508627 90459 7925 

D4 1000100 73048 74405 13355 

D5 711498 0 0 0 
          

E1  -        

E2 825866 312253 22076 7557 

E3 1000100 512832 32510 10421 

E4 1000100 161588 72301 12507 

E5 626167 0 0 0 
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 image high low sparse  

F1 88771 5617 695 227 

F2 998412 177123 22692 3357 

F3 1000100 536391 103153 7251 

F4 1000100 249582 89581 17202 

F5 540862 3199 3309 1046 
          

G1  -        

G2 764217 12477 478 191 

G3 1000100 704693 73710 8401 

G4 1000100 91574 56661 5506 

G5 455495 0 0 422 
          

H1  -        

H2 365795 0 0 8 

H3 1000100 735409 87712 5616 

H4 1000100 202858 99118 7794 

H5 370023 0 0 0 
          

I1  -        

I2 34799 0 0 0 

I3 932568 313718 6738 5023 

I4 1000100 523950 78900 12242 

I5 284846 21012 13227 1619 
          

J1  -        

J2  -        

J3 485980 43052 3581 228 

J4 801494 492158 79403 14062 

J5 166983 19024 11585 3117 
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